Αστροφυσική, Διάστημα Σημαντικά θέματα

Το πληθωριστικό μοντέλο του σύμπαντος Μία συνάντηση της κοσμολογίας με τη σωματιδιακή φυσική

Share

Πεδίο Higgs και πληθωρισμός

Ο Guth, που στην αρχή είχε ασχοληθεί με τη σωματιδιακή φυσική, μπόρεσε να εφαρμόσει τις θεωρίες της μεγάλης ενοποίησης GUTs στην κοσμολογία. Έτσι, μπόρεσε να πάρει ακριβώς τον κατάλληλο μηχανισμό για να πετύχει την εκθετική διαστολή ή πληθωρισμό. Μετά την εποχή Planck, κατά τα πρώτα 10 -43 του δευτερολέπτου, σπάει η αρχική μεγάλη συμμετρία  και η βαρύτητα αποχωρίζεται από τις υπόλοιπες τρεις δυνάμεις. Ομοίως η ισχυρή πυρηνική δύναμη – περίπου στα πρώτα 10-35 sec – αποχωρίζεται από την ηλεκτρασθενή (άλλη μια διάσπαση συμμετρίας). Στα πλαίσια των θεωριών της μεγάλης ενοποίησης υπάρχουν βαθμωτά πεδία τα οποία σχετίζονται με τις διασπάσεις αυτών των συμμετριών. Ακριβώς τότε – και σε χρόνο 10-32 sec περίπου – τα βαθμωτά πεδία διπλασίασαν το μέγεθος του σύμπαντος τουλάχιστον κατά μια φορά ανά 10-34 του δευτερολέπτου ή μέσα σε 10-32 sec έγιναν 100 διπλασιασμοί μεγέθους.

Το μοντέλο του Guth ξεκινά από την ιδέα της μετάβασης Higgs, δηλαδή την χρονική στιγμή που διασπώνται οι GUTs, ή την διαδικασία με την οποία καταστρέφεται η συμμετρία τους, καθώς τα διανυσματικά μποζόνια Χ της GUT «καταβροχθίζουν» τα σωματίδια Higgs και αποκτούν μάζα. Ο Guth έδωσε το όνομα «ψεύτικο κενό» ή ψευδοκενό στην κατάσταση όπου τα πεδία Higgs είναι μεν μηδενικά – ενώ η πυκνότητα της ενέργειας των πεδίων Higgs είναι κολοσσιαία και σταθερή! – και αληθές κενό στην κατάσταση στην οποία η πυκνότητα ενέργειας των πεδίων Higgs έχει την ελάχιστη τιμή της και το ίδιο το πεδίο δεν είναι μηδενικό (αντίθετες δηλαδή καταστάσεις στα δύο είδη κενού).

Στο αληθές κενό η συμμετρία είναι κατεστραμμένη και τα διανυσματικά μποζόνια έχουν αποκτήσει μάζα. Μάλιστα πρότεινε ότι η διαταραχή της GUT αντιστοιχεί σε μια μετάβαση από το ψεύτικο στο αληθινό κενό. Η κολοσσιαία ενέργεια την εποχή του πληθωρισμού βρέθηκε, λοιπόν, μέσα στο ψευδοκενό, που χαρακτηρίζεται από ένα πεδίο απωστικής βαρύτητας.

Ας σημειωθεί ότι ένα χαρακτηριστικό του ψευδοκενού είναι ότι δεν αραιώνει με την διαστολή – όπως για παράδειγμα ένα αέριο – αλλά η πυκνότητα της ενέργειας του παραμένει σταθερή καθώς ο Κόσμος αυξάνεται. Με αυτό τον τρόπο, λόγω της διαστολής η ενέργεια του αντί να μειώνεται, συνεχώς αυξανόταν, δημιουργώντας κολοσσιαίες ποσότητες ενέργειας.     Όμως, από τις εξισώσεις προκύπτει ότι το σύμπαν ψύχθηκε ανάμεσα στο 10-43 και 1O-35 δευτερόλεπτο – μετά τη στιγμή της δημιουργίας – και τότε τα πεδία Higgs σταθεροποιούνται σε μια κατάσταση ελάχιστης ενέργειας.

Αλλά σε ποιά κατάσταση σταθεροποιήθηκε; Ας υποθέσουμε ότι σταθεροποιούνται τελικά σε μια κατάσταση που αντιστοιχεί στο ψεύτικο κενό, το οποίο είναι απλώς ένα τοπικό ελάχιστο, σαν μια κοιλότητα που βρίσκεται μέσα στον κρατήρα ενός ηφαιστείου. Σε μια τέτοια κατάσταση: — η συμμετρία παραμένει αδιατάραχτη — η ισχυρή κι η ηλεκτρασθενής δύναμη παραμένουν ενωμένες και η πυκνότητα της ενέργειας των πεδίων είναι κολοσσιαία: 1095 έργια ανά κυβικό εκατοστό, δηλαδή 1059 φορές μεγαλύτερη από την πυκνότητα του ατομικού πυρήνα. Όπως τα σωματίδια άλφα διαφεύγουν μέσα από μια κβαντική σήραγγα κάνοντας χρήση της Αρχής της Απροσδιοριστίας, έτσι και τα πεδία Higgs μπορούν να ξεφύγουν από την κατάσταση του ψεύτικου κενού μέσα από μια σήραγγα με τη βοήθεια της Αρχής της Απροσδιοριστίας, προς το αληθές κενό.

Ο Guth ανακάλυψε έκπληκτος ότι ενώ το πεδίο Higgs εγκλωβίζεται στο ψεύτικο κενό (ή στην υπέρψυχρη κατάσταση), η τεράστια πυκνότητα της ενέργειας του έχει σαν αποτέλεσμα μια κολοσσιαία συνεχής ώθηση του Σύμπαντος προς τα έξω, η οποία το εξαναγκάζει να διασταλεί με πολύ μεγαλύτερη ταχύτητα απ’ αυτή που προβλέπει το Αποδεκτό Μοντέλο. Για ένα πολύ σύντομο χρονικό διάστημα, η επίδραση είναι παρόμοια με την εισαγωγή στις εξισώσεις μιας κοσμολογικής σταθεράς, αλλά πολύ ισχυρότερης απ’ όσο είχε φανταστεί ο Αϊνστάιν. Το αποτέλεσμα είναι η εκθετική διαστολή του σύμπαντος. Το σύμπαν δηλαδή διπλασιάζεται σε μέγεθος συνεχώς, κάθε 10-34 του δευτερολέπτου που περνάει.

Αλλά αν το Σύμπαν διπλασιάζεται κάθε 10-34 του δευτερολέπτου, τότε 10-33 του δευτερόλεπτα μετά τη στιγμή της δημιουργίας, ο δεδομένος όγκος έχει υποστεί διπλασιασμό 10 φορές και αυξάνεται σε μέγεθος με ένα συντελεστή της τάξης του 2100.

Σε ελάχιστο χρόνο μια περιοχή 10-32 φορές μικρότερη από ένα πρωτόνιο (περίπου 10-48 εκατοστά) μπορεί να διογκωθεί — απ’ αυτό προήλθε και η ονομασία του μοντέλου — και να γίνει μια περιοχή με διάμετρο 10 εκατοστά, αντίστοιχη δηλαδή με το χώρο που καταλαμβάνει ένα γκρέηπφρουτ. Ή για να καταλάβουμε το μέγεθος της διαστολής φαντασθείτε ένα μπιζέλι (με ακτίνα 1 εκατοστό) να καταλάβει τον χώρο του δικού μας Γαλαξία. Αν δεν υπήρχε ο πληθωρισμός αντί για την αύξηση της ακτίνας του σύμπαντος κατά 1050 φορές – μέσα σε 10-32 του δευτερολέπτου – το σύμπαν θα είχε αυξηθεί μόνο κατά 30 φορές!  

Μία από τις πιο παράξενες ιδιότητες του πληθωρισμού είναι ότι έδρασε ταχύτερα από την ταχύτητα του φωτός. Το φως χρειάζεται 30 δισεκατομμυριοστά του δευτερολέπτου για να διασχίσει ένα εκατοστό, ο πληθωρισμός όμως διαστέλλει το σύμπαν από μια διάμετρο πολύ-πολύ μικρότερη αυτής του πρωτονίου σε διάμετρο 10 cm σε χρόνο 15 Χ 10-33 sec. Οι υπολογισμοί δείχνουν μια ταχύτητα διαστολής 100 φορές μεγαλύτερη από του φωτός. Κάτι τέτοιο επιτρέπεται από τη σχετικότητα γιατί δεν κινείται η ύλη, αλλά διαστέλλεται ο ίδιος ο χωροχρόνος.

Διαστάσεις του σύμπαντος πριν και μετά τον πληθωρισμό

Ο αισθητός Κόσμος είναι η πιο μακρινή ακτίνα στην οποία μπορούμε να δούμε σήμερα. Είναι ο σφαιρικός όγκος του Κόσμου μέσα στον παρόντα ορίζοντα. Η ακτίνα αυτής της σφαίρας είναι η απόσταση που έχει ταξιδέψει το φως από την αρχή του χρόνου. Αν πολλαπλασιάσουμε την ταχύτητα του φωτός με την ηλικία του σύμπαντος  παίρνουμε κατά προσέγγιση 1028 εκατοστά για τον ορίζοντα σήμερα. – Η εξίσωση για την διαστολή του Κόσμου λέει ότι έχει διασταλεί σχεδόν κατά έναν παράγοντα 1026 από την εποχή μετά τον πληθωρισμό (10-32  δευτερόλεπτα) έως σήμερα . Κατά συνέπεια, ο σημερινός ορίζοντας μετά το τέλος του πληθωρισμού ήταν τότε μια σφαίρα διαμέτρου περίπου 10 έως 100 εκατοστά (η διαφορά είναι μικρή). – Και στην αρχή του πληθωρισμού ο αισθητός κόσμος ήταν περίπου 1050 φορές μικρότερος, ή μόνο 10-48 εκατοστά. Ήταν πάρα πολύ μικρότερος από οποιαδήποτε γνωστή μας δομή. Ο πληθωρισμός πραγματοποιείται στον απίστευτα μικροσκοπικό κόσμο του πολύ πρώιμου σύμπαντος, και ξαφνικά τον κάνει να αποκτήσει διαστάσεις στις οποίες είμαστε εξοικειωμένοι.

Αλλά από τη στιγμή που τα πεδία Higgs θα ξεφύγουν προς το αληθινό κενό, μέσα από τη «κβαντική σήραγγα», σταματά ο ραγδαίος εκθετικός πληθωρισμός. Αυτό είχε σαν αποτέλεσμα να μην δημιουργείται πια ενέργεια στο ψευδοκενό και ο πληθωρισμός να σταματήσει.  Η ενέργεια του πεδίου είχε καταναλωθεί στην παραγωγή ενός τεράστιου πλήθους ζευγών από σωματίδια και αντι-σωματίδια (μια καυτή σούπα από ηλεκτρόνια, ποζιτρόνια, νετρίνα και κουάρκς). Τότε το σύμπαν αναθερμαίνεται από τη διαδικασία αυτή φτάνοντας ξανά στους 1027 Κέλβιν.

Αυτή η αναθέρμανση εμφανίζεται λόγω της παραγωγής σωματιδίων από το πεδίο Higgs. Μάλιστα όλη η ύλη από την οποία αποτελείται σήμερα το σύμπαν δημιουργήθηκε από τη διαδικασία της αναθέρμανσης. Σχεδόν το σύνολο της ύλης και της ενέργειας του Σύμπαντος όπως το ξέρουμε, θα μπορούσε να έχει προκύψει με αυτό τον τρόπο από τη διαδικασία της πληθωρισμός. Αυτή η δυνατότητα δημιουργείται επειδή η βαρυτική ενέργεια του Σύμπαντος είναι αρνητική κι όσο περισσότερο αρνητική είναι, τόσο μεγαλύτερο είναι και το Σύμπαν. Κι ενώ η βαρυτική ενέργεια του σύμπαντος – στην περίοδο του πληθωρισμού – γίνεται όλο και περισσότερο αρνητική, αυξάνεται η θετική ύλο-ενέργεια κι έτσι επέρχεται αλληλοεξουδετέρωση.

Κι όπως το θέτει ο Guth, το Σύμπαν είναι το «δωρεάν γεύμα». Όσο επιβραδύνεται η διαστολή, αποκτώντας το φυσιολογικό της ρυθμό — που αντιστοιχεί στο Καθιερωμένο Μοντέλο της Μεγάλης Έκρηξης — τα μποζόνια X (της υπερδύναμης), που δημιουργήθηκαν από την ενέργεια Higgs, αποσυντίθενται προκαλώντας μια μικρή περίσσεια ύλης ως προς την αντιύλη και τα υπόλοιπα εξελίσσονται όπως περιγράφει το Καθιερωμένο Μοντέλο. Ο ίδιος ο πληθωρισμός ολοκληρώνεται μόλις 10-30 δευτερόλεπτα μετά τη στιγμή της δημιουργίας και στο τέλος της εποχής του πληθωρισμού το σύμπαν έχει ένα πυκνό μίγμα από κουάρκ (ύλη), αντικουάρκ (αντιύλη) και γκλουόνια.

Έτσι λύνονται και τα υπόλοιπα τρία προβλήματα

 inflationary_kosmos

Η επίλυση του προβλήματος του ορίζοντα είναι η εξής: απλά, οι περιοχές που βρίσκονται σήμερα στις «αντίθετες πλευρές» του Σύμπαντος βρίσκονταν σε επαφή» λίγο μετά τη στιγμή της δημιουργίας, προτού απομακρυνθούν ραγδαία η μία από την άλλη εξαιτίας της πληθωρισμού. Το Σύμπαν που αντιλαμβανόμαστε σήμερα είναι πολύ ομοιόμορφο, επειδή έχει προέλθει από την «έκρηξη» ενός μικροσκοπικού σπόρου στον οποίο όλη η ενέργεια ήταν ομοιόμορφα κατανεμημένη.

Η επίλυση του προβλήματος της ομαλότητας είναι λίγο πιο πολύπλοκη. Όταν φουσκώνετε ένα μπαλόνι, η επιφάνεια γίνεται ολοένα και πιο επίπεδη (ομαλότερη) όσο πιο πολύ διογκώνεται το μπαλόνι. Τείνει να ταυτιστεί με μια επίπεδη επιφάνεια. Το ίδιο συμβαίνει και στην περίπτωση της καμπύλωσης του χωροχρόνου, καθώς ο χωροχρόνος διαστέλλεται εξαιτίας της πληθωρισμού. Οποιοδήποτε βαθμό καμπύλωσης κι αν θεωρήσετε για αρχή, από τη στιγμή που ο χωροχρόνος έχει διασταλεί με ένα συντελεστή της τάξης του 1050, καταντά να ταυτίζεται με μια επίπεδη επιφάνεια (επίπεδο Σύμπαν). Κάθε κυρτό σύμπαν μετατρέπεται — απ’ όσο μπορούν να μας πουν οι παρατηρήσεις μας — σε επίπεδο σύμπαν, με πυκνότητα που πλησιάζει στην κρίσιμη τιμή, από τη στιγμή που το σύμπαν έχει φτάσει στο μέγεθος ενός γκρέηπφρουτ. Επίσης, επειδή η ενέργεια σε ένα βαρυτικό πεδίο είναι αρνητική, ενώ η ενέργεια που αποθηκεύεται στην ύλη είναι θετική, αν το σύμπαν είναι ακριβώς επίπεδο, τότε όπως υπέδειξε ο Tryon οι δύο ποσότητες εξουδετερώνονται, και η συνολική ενέργεια του Σύμπαντος είναι ακριβώς μηδέν. Στη περίπτωση αυτή, οι κβαντικοί κανόνες του επιτρέπουν να ζήσει επ’ άπειρον.  Και το πρόβλημα των μονοπόλων λύνεται με πραγματικά πολύ απλό τρόπο.

Παρόλο που μπορεί να υπήρχαν αρκετά μονόπολα στο πολύ πρωταρχικό Σύμπαν, πριν τον πληθωρισμό, η περιοχή του χώρου που μπορούμε να δούμε έχει προέλθει από τη διαστολή ενός τόσο μικρού όγκου, ώστε να είναι πολύ απίθανο να υπήρξε έστω και ένα μονόπολο σ’ αυτήν ειδικά την περιοχή του χωροχρόνου. Αυτή η ανάλυση του προβλήματος των μονοπόλων αποτελεί το κυριότερο μέρος του μοντέλου Guth αλλά και των μεταγενέστερων πληθωριστικών μοντέλων.

Σαν συνέπεια, μπορεί στην πραγματικότητα να υπάρχουν άλλες περιοχές του χωροχρόνου πέρα από το ορατό Σύμπαν οι οποίες δεν υπέστησαν διόγκωση με την ίδια ταχύτητα με τη δική μας «φυσαλίδα» από την οποία προήλθε το Σύμπαν. Μπορεί να ζούμε σε μια «τοπική» περιοχή (η οποία είναι ολόκληρο το παρατηρήσιμο Σύμπαν) ενός πολύ μεγαλύτερου μετασύμπαντος. Αλλά θα μπορούσαν να γίνουν ορατές αυτές οι περιοχές; Στην πραγματικότητα, αυτή η προοπτική υπήρξε και η μοιραία ατέλεια του πρωταρχικού πληθωριστικού μοντέλου.

Print Friendly, PDF & Email

About the author

physics4u

Share