Ο Κόσμος μετά τον πληθωρισμό
Και τι έγινε μετά το τέλος του πληθωρισμού;
Το σύμπαν έγινε σχεδόν ομοιογενές, επίπεδο, και χωρίς σωματίδια. Μία από τις επιτυχίες της θεωρίας του πληθωρισμού είναι ότι εξήγησε γιατί δεν βλέπουμε σήμερα σωματίδια – λείψανα εκείνης της εποχής, μονόπολα και γκραβιτίνα. Όμως ακόμα πρέπει να εξηγήσουμε πώς γεννήθηκαν όλα τα σωματίδια που βλέπουμε σήμερα
Επειδή ο πληθωρισμός μειώνει την πυκνότητα των σωματιδίων ουσιαστικά στο μηδέν, ξέρουμε ότι τα σωματίδια σήμερα στον Κόσμο πρέπει όλα να έχουν παραχθεί μετά από τον πληθωρισμό. Θυμηθείτε ότι ο πληθωρισμός εμφανίζεται όταν σε κάποια περιοχή του διαστήματος (ψευδοκενό) η μεγαλύτερη συμβολή στην ενεργειακή πυκνότητα προέρχεται από ένα βαθμωτό πεδίο υψηλής ενέργειας. Το βαθμωτό πεδίο που προκάλεσε τον πληθωρισμό λέγεται ίνφλατον (inflaton). Κατά τη διάρκεια του πληθωρισμού το σύμπαν επεκτείνεται όπως είδαμε εκθετικά και η ενεργειακή πυκνότητα του πεδίου ίνφλατον μειώνεται πολύ αργά. Ο πληθωρισμός τελειώνει όταν αυτό το πεδίο φτάσει σε μια αρκετά χαμηλή ενεργειακή πυκνότητα (στο αληθές κενό), αρχίζοντας να συμπεριφέρεται σαν την ύλη, δηλ. όταν αρχίζει το σύμπαν να υφίσταται κανονική διαστολή. Έτσι στο τέλος του πληθωρισμού ουσιαστικά όλη η ενέργεια του Κόσμου περιλαμβάνεται σε αυτό το ένα, σχεδόν ομοιογενές πεδίο.
Πολλά πεδία και σωματίδια στον Κόσμο είναι ασταθή που σημαίνει ότι μετά από λίγο αποσυντίθενται σε άλλες μορφές ενέργειας. Έτσι και το πεδίο ίνφλατον, μόλις η ενεργειακή πυκνότητά του έγινε αρκετά μικρή ώστε να μην μπορεί να κάνει εκθετική διαστολή, το πεδίο inflaton γίνεται ιδιαίτερα ασταθές. Μετά από τον πληθωρισμό η ενέργεια στο πεδίο inflaton θα είχε διασπαστεί γρήγορα σε άλλα σωματίδια και πεδία, έως ότου τελικά ο Κόσμος να περιέχει κυρίως από πιο μακρόβιες μορφές ύλης και ενέργειας, όπως πρωτόνια, νετρόνια, ηλεκτρόνια, και ηλεκτρομαγνητική ακτινοβολία. Αυτά τα σωματίδια-λείψανα (μονόπολα και γκραβιτίνα) μπορούσαν να παραχθούν μόνο στις θερμές και πυκνές συνθήκες του πρώιμου σύμπαντος. Και μετά από τον πληθωρισμό η πυκνότητα και η θερμοκρασία ήταν πάρα πολύ μικρή για να παραχθούν αυτά τα μόρια. Κάθε δε μονόπολο και γκραβιτίνο που παρήχθησαν πριν από τον πληθωρισμό είναι πολύ λεπτά για να τα βρούμε σήμερα. Από τη στιγμή που το ψευδές κενό έχει αποδιεγερθεί, το σύμπαν ξαναρχίζει την κανονική επιβραδυνόμενη διαστολή του.
Η ενέργεια που υπήρχε εγκλωβισμένη στο ψευδές κενό ελευθερώνεται με τη μορφή θερμότητας. Η τεράστια πληθωριστική διαστολή είχε ψύξει το σύμπαν σε μια θερμοκρασία πολύ κοντά στο απόλυτο μηδέν. Με το τέλος του πληθωρισμού, όμως, η θερμότητα που ελευθερώνεται το αναθερμαίνει ξαφνικά στην τεράστια θερμοκρασία των 1028 βαθμών. Η διαδικασία αυτή λέγεται επαναθέρμανση. Αυτή η απέραντη δεξαμενή θερμότητας που δημιουργήθηκε τότε επιζεί και σήμερα, με τη μορφή της θερμικής ακτινοβολίας κοσμικού υποβάθρου. Ένα παραπροϊόν της απελευθέρωσης της ενέργειας του κενού είναι ότι τα πολλά δυνάμει σωματίδια που υπήρχαν σ’ αυτό προσέλαβαν ένα μικρό ποσό ενέργειας και προήχθησαν σε πραγματικά σωματίδια. Έπειτα από περαιτέρω διεργασίες και μεταβολές, ένα υπόλειμμα αυτών των αρχέγονων σωματιδίων έφτασε σήμερα να αποτελεί τους 1050 τόνους της ύλης που σχηματίζει όλο το παρατηρήσιμο σύμπαν. Πόσο καιρό μετά από τον πληθωρισμό χρειάστηκε το inflaton να διασπαστεί στα σωματίδια που βλέπουμε σήμερα; Δεν ξέρουμε, αλλά αυτό που ξέρουμε είναι ότι έπρεπε να τελειώσει μέχρι την ώρα της πυρηνοσύνθεσης, δηλ. περίπου τρία λεπτά μετά από το τέλος του πληθωρισμού.
Το σύμπαν de Sitter
Είναι γεγονός ότι η εκθετική διαστολή του χωροχρόνου περιγράφηκε ακριβώς από τον Willem de Sitter στα 1917, σαν μια λύση των εξισώσεων της γενικής σχετικότητας. Όμως, πάνω από μισό αιώνα αυτό το μοντέλο του de Sitter αντιμετωπίστηκε μόνο ως μαθηματικό αξιοπερίεργο, που δεν είχε καμιά σχέση με το πραγματικό σύμπαν. Η λύση του De Sitter των εξισώσεων του Αϊνστάιν περιγράφει ένα άδειο χωροχρόνο, ένα στατικό σύμπαν. Αλλά κατά τη δεκαετία του 1920 αναγνωρίστηκε ότι αν προσθέταμε μια μικροσκοπική ποσότητα ύλης σ’ αυτό το μοντέλο (με μορφή σωματιδίων διασκορπισμένων στο χωροχρόνο), αυτά θα απομακρύνονταν μεταξύ τους με εκθετικό ρυθμό καθώς ο χωροχρόνος θα διαστελλόταν. Αυτό σημαίνει ότι η απόσταση μεταξύ δύο οποιονδήποτε σωματιδίων θα διπλασιαζόταν συνεχώς ανά ίσα χρονικά διαστήματα. Αυτό φαινόταν τελείως μη ρεαλιστικό, ακόμη και όταν ανακαλύφθηκε η διαστολή του σύμπαντος από τον Χάμπλ το 1920. Όταν όμως η θεωρία του πληθωρισμού έδειξε ότι το σύμπαν υπέστη μια εκθετική διαστολή κατά το πρώτο κλάσμα του δευτερολέπτου μετά τη γέννησή του, αυτή η πληθωριστική εκθετική διαστολή φάνηκε ότι μπορούσε να περιγραφεί ακριβώς από το μοντέλο του de Sitter, την πρώτη επιτυχή κοσμολογική λύση των εξισώσεων του Einstein της Γενικής Σχετικότητας.
Η ιστορία της επιστήμης όμως μας λέει ότι το πρώτο πληθωριστικό μοντέλο αναπτύχθηκε από τον Alexei Starobinsky, στο Ινστιτούτο Landau για τη θεωρητική φυσική στη Μόσχα στα τέλη της δεκαετίας του 1970, αλλά τότε δεν χρησιμοποιήθηκε ο όρος πληθωρισμός. Το αρχικό ήταν ένα πολύ περίπλοκο μοντέλο βασισμένο σε μια κβαντική θεωρία βαρύτητας, αλλά προκάλεσε αίσθηση μεταξύ των κοσμολόγων της τότε Σοβιετικής Ένωσης και έμεινε γνωστό ως το “μοντέλο Starobinsky” για το σύμπαν. Δυστυχώς, εξαιτίας των δυσκολιών που είχαν τότε οι επιστήμονες της Σοβιετικής Ένωσης να ταξιδέψουν έξω από τα σύνορα της χώρας τους, το μοντέλο αυτό δεν διαδόθηκε στη Δύση.
Σημείωση Τελευταίες εργασίες όπως των Bezrukov – Shaposhnikov δείχνουν ότι το πεδίο ίνφλατον και το πεδίο Higgs είναι το ίδιο. Κάποιοι άλλοι φυσικοί δέχονται ότι είναι διαφορετικά ενώ άλλοι πολύ παρόμοια. Γι αυτό υπάρχει και αυτό το μπέρδεμα με τα δύο πεδία. Άλλοτε αναφερόμαστε στο πεδίο ίνφλατον (που προκάλεσε τον πληθωρισμό) και άλλοτε στο πεδίο Higgs που έδωσε μάζα στα σωματίδια αλληλεπιδρώντας μαζί τους. Σύμφωνα με τον Linde υπήρχε στο σύμπαν μετά την εποχή Planck και πριν την GUT (μεταξύ 10-43 sec και 10-35 sec), ένα ενεργειακό πεδίο πολύ παρόμοιο με το πεδίο Higgs του πληθωρισμού GUT. Αυτό το “πεδίο ίνφλατον” είναι παρόμοιο με το πεδίο Higgs στο ότι το σύμπαν τεχνικά ήταν σαν το κενό, όταν γέμισε με αυτό το πεδίο, ακόμα κι αν η ενεργειακή πυκνότητα αυτού του πεδίου ήταν τεράστια. Πάλι, όπως το πεδίο Higgs, έτσι και η ενεργειακή πυκνότητα του πεδίου ίνφλατον μένει σταθερή ακόμα κι αν το σύμπαν διαστέλλεται. Αναλογικά, αυτό το πεδίο (το ίνφλατον) μπορεί να είναι η αιτία του πληθωρισμού, ακριβώς όπως κάνει αργότερα το πεδίο Higgs στην εποχή GUT. Στην πραγματικότητα, όσο μεγαλύτερη είναι η ενέργεια του πεδίου ίνφλατον τόσο πιο γρήγορα πραγματοποιείται ο πληθωρισμός.
Ο Niel Turok στο πρόσφατο βιβλίο του: Αέναο Σύμπαν γράφει ότι η αιτία τότε του πληθωρισμού ήταν η σκοτεινή ενέργεια, αλλά με πολύ μεγαλύτερη κοσμολογική σταθερά Λ, από τη σημερινή Λ που προκαλεί την επιτάχυνση της διαστολής του σύμπαντος.
Πηγές: Το Big Bang του John Gribbin, Περιοδικό Science Illustrated, Wikipedia, Paul Davis, παλιά άρθρα του physics4u Τελευταία ενημέρωση στις 21-04-08