Κβαντική πληροφορία: Οι κανόνες για ένα πολύπλοκο κβαντικό κόσμο
Άρθρο 4ο για την επιστήμη της κβαντικής πληροφορίας

Άρθρο του Michael A. Nielsen, από την ιστοσελίδα του Scientific American.com, Ιανουάριος 2004

1o, 2ο, 3ο, 4ο, 5ο

Οι διαπλεγμένες καταστάσεις

Τα απλά qubits είναι ενδιαφέροντα, αλλά ακόμη πιο ενδιαφέρουσα συμπεριφορά προκύπτει όταν διάφορα qubits αποτελέσουν μια ομάδα. Ένα κύριο χαρακτηριστικό για την επιστήμη της κβαντικής πληροφορίας είναι η κατανόηση ότι οι ομάδες από δύο ή περισσότερα κβαντικά αντικείμενα μπορούν να έχουν καταστάσεις που να είναι διαπλεγμένες. Αυτές οι διαπλεγμένες καταστάσεις έχουν ιδιότητες τελείως ξεχωριστές από οτιδήποτε αντικείμενο της κλασσικής φυσικής και αποτελούν ένα νέο τύπο φυσικών πηγών με τις οποίες μπορούμε να εκτελέσουμε ενδιαφέρουσες εργασίες. 

Ο Schrödinger είχε εντυπωσιαστεί τόσο πολύ από την διεμπλοκή, ώστε σε μια εργασία του του 1935 (το ίδιο έτος που εισήγαγε και την περίφημη γάτα του), την χαρακτήρισε ως το κύριο χαρακτηριστικό της κβαντομηχανικής, το χαρακτηριστικό εκείνο που ενεργοποιεί την απομάκρυνσή της από τη κλασσική γραμμή σκέψης. Τα μέλη μιας διαπλεγμένης συλλογής αντικειμένων, δεν έχουν τις δικές τους ξεχωριστές κβαντικές καταστάσεις. Μόνο η ομάδα ως σύνολο έχει μια καλά καθορισμένη κατάσταση. Βλέπε εικόνα 4. Το φαινόμενο αυτό είναι πολύ πιο ιδιόμορφο από την απλή υπέρθεση των καταστάσεων ενός συγκεκριμένου σωματιδίου. Ένα τέτοιο σωματίδιο έχει μια καλά καθορισμένη κβαντική κατάσταση ακόμη και αν αυτή η κατάσταση μπορεί να είναι υπέρθεση διαφορετικών κλασσικών καταστάσεων. 


Εικόνα 4. 

Αν τα ζάρια μπορούσαν να διαπλεχθούν με τον τρόπο των κβαντικών σωματιδίων, κάθε διαπλεγμένο ζευγάρι θα έδινε το ίδιο αποτέλεσμα, ακόμη και αν τα ρίχναμε σε τοποθεσίες που θ' απείχαν έτη φωτός η μία από την άλλη ή σε εντελώς διαφορετικούς χρόνους. 

Τα διαπλεγμένα κβαντικά συστήματα συμπεριφέρονται με τρόπους που είναι αδύνατοι στον κλασσικό κόσμο.
Τα διαπλεγμένα αντικείμενα συμπεριφέρονται σαν να ήταν συνδεδεμένα το ένα με το άλλο, άσχετα από το πόσο μακριά βρίσκονται μεταξύ τους. Η απόσταση δεν ελαττώνει καθόλου τον βαθμό διεμπλοκής. Αν κάτι είναι διαπεπλεγμένο με άλλα αντικείμενα, και εκτελέσουμε μια μέτρηση σ' αυτό, συγχρόνως παίρνουμε πληροφορία και για τους συνεργάτες του. Εύκολα μπορεί να γίνει η παρεξήγηση και να σκεφθούμε ότι κάποιος θα μπορούσε να χρησιμοποιήσει τη διεμπλοκή για να στείλει σήματα με ταχύτητα μεγαλύτερη του φωτός, παραβιάζοντας την ειδική σχετικότητα του Einstein, αλλά η πιθανοκρατική φύση της κβαντομηχανικής εμποδίζει παρόμοιες προσπάθειες. 

Για ένα μεγάλο χρονικό διάστημα, η διεμπλοκή θεωρήθηκε ως αξιοπερίεργο φαινόμενο και κατά βάση αγνοήθηκε από τους φυσικούς. Η κατάσταση άλλαξε στη δεκαετία του 1960 όταν ο John S. Bell στο CERN, πρόβλεψε ότι οι διαπλεγμένες κβαντικές καταστάσεις μας επιτρέπουν να εκτελέσουμε κρίσιμους πειραματικούς ελέγχους, με τους οποίους διακρίνουμε την κβαντομηχανική από την κλασσική φυσική. Ο Bell πρόβλεψε και οι πειραματικοί επιβεβαίωσαν ότι τα διαπλεγμένα κβαντικά συστήματα παρουσιάζουν τέτοια συμπεριφορά, η οποία είναι αδύνατη στον κλασσικό κόσμο. Αδύνατη, ακόμη και αν κάποιος άλλαζε τους νόμους της φυσικής προσπαθώντας να εξομοιώσει τις κβαντικές προβλέψεις με ένα σύνολο κλασσικών νόμων οποιουδήποτε είδους! Η διεμπλοκή αναπαριστάνει ένα τόσο νεωτεριστικό χαρακτηριστικό του κόσμου μας, ώστε ακόμη και οι ειδικοί βρίσκουν δυσκολία να σκέφτονται μ' αυτήν. Αν και κάποιος μπορεί να χρησιμοποιήσει τα μαθηματικά της κβαντομηχανικής για να επιχειρηματολογεί για την διεμπλοκή, μόλις ξαναγυρίσει σε επιχειρήματα με κάποια ανάλογα κλασσικά φαινόμενα, υπάρχει μεγάλος κίνδυνος να οδηγηθεί σε λάθος συμπεράσματα από την κλασσική βάση των αναλόγων που επικαλείται. 

Στις αρχές της δεκαετίας του 1990 η ιδέα ότι η διεμπλοκή βγαίνει τελείως έξω από τη θεώρηση της κλασσικής φυσικής, έκανε τους ερευνητές ν' αναρωτηθούν αν η διεμπλοκή θα μπορούσε να φανεί χρήσιμη ως πηγή επίλυσης διαφόρων προβλημάτων επεξεργασίας πληροφορίας, με νέους τρόπους. Η απάντηση ήταν καταφατική. Η πληθώρα των παραδειγμάτων άρχισε το 1991, όταν ο Artur K. Ekert του πανεπιστημίου του Cambridge έδειξε πως να χρησιμοποιήσουμε τη διεμπλοκή για να διαμοιράσουμε κρυπτογραφικά κλειδιά που δεν μπορούν να υποκλαπούν. Το 1992 ο Charles H. Bennett στην IBM και ο Stephen Wiesner του πανεπιστημίου του Tel Aviv, έδειξαν πως η διεμπλοκή θα μπορούσε να βοηθήσει στην αποστολή κλασσικής πληροφορίας από ένα τόπο σ' έναν άλλο (μια διαδικασία που λέγεται υπέρ-πυκνή κωδικοποίηση, στην οποία δύο μπιτς μεταφέρονται από ένα σωματίδιο το οποίο φαινομενικά έχει χώρο για να μεταφέρει μόνο ένα). Το 1993 μια διεθνής ομάδα με 6 συνεργάτες εξήγησε πως να τηλεμεταφέρουμε μια κβαντική κατάσταση από ένα τόπο σ' έναν άλλο, χρησιμοποιώντας τη διεμπλοκή. Ακολούθησε μια έκρηξη από νέες εφαρμογές. 

Ζυγίζοντας τη διεμπλοκή

Όπως τα ξεχωριστά κιούμπις μπορούν να παρασταθούν με πολλά διαφορετικά φυσικά αντικείμενα, έτσι και η διεμπλοκή έχει ιδιότητες που είναι ανεξάρτητες από τη φυσική αναπαράστασή της. Για πρακτικούς σκοπούς μπορεί να μας συμφέρει να εργαστούμε με το ένα ή το άλλο σύστημα, αλλά κατ' αρχήν αυτό δεν έχει σημασία. Για παράδειγμα, κάποιος μπορεί να κάνει κβαντική κρυπτογραφία με ένα διαπλεγμένο ζεύγος φωτονίων ή ένα διαπλεγμένο ζεύγος ατομικών πυρήνων ή ακόμη και ένα φωτόνιο διαπλεγμένο με ένα πυρήνα.  

Η μη εξάρτηση από την αναπαράσταση, μας κάνει να σκεφτούμε μια αναλογία μεταξύ της διεμπλοκής και της ενέργειας. Η ενέργεια υπακούει στους νόμους της θερμοδυναμικής ανεξάρτητα αν είναι χημική ενέργεια, πυρηνική ενέργεια ή οποιασδήποτε άλλης μορφής. Θα μπορούσε άραγε να αναπτυχθεί μια γενική θεωρία της διεμπλοκής ακολουθώντας πάνω-κάτω την ανάπτυξη των νόμων της θερμοδυναμικής; 

Η ελπίδα αυτή αναπτύχθηκε στο δεύτερο μισό της δεκαετίας του 1990, όταν οι ερευνητές έδειξαν ότι οι διαφορετικοί τύποι της διεμπλοκής είναι ποιοτικά ισοδύναμοι - η διεμπλοκή μιας κατάστασης μπορεί να μεταβιβαστεί σε άλλη, όπως π.χ. η ενέργεια που μεταβιβάζεται από ένα φορτιστή μπαταριών σε μια μπαταρία. Στηριγμένοι πάνω σε τέτοιες ποιοτικές αναλογίες, οι ερευνητές άρχισαν να εισάγουν ποσοτικά μέτρα για τη διεμπλοκή. Η ανάπτυξη αυτή συνεχίζεται και σήμερα και οι ερευνητές δεν έχουν ακόμη συμφωνήσει ποιός είναι ο καλύτερος τρόπος για την ποσοτικοποίηση της διεμπλοκής. Το καταλληλότερο σχήμα μέχρι τώρα βασίζεται στην καθιέρωση μιας πρότυπης μονάδας για τη διεμπλοκή, συγγενή με την μονάδα μάζας ή ενέργειας. 

Η προσέγγιση αυτή δουλεύει κατ' αναλογία με την μέτρηση μαζών με ζύγισμα. Η μάζα ενός αντικειμένου ορίζεται με το πόσες φορές πρέπει να βάλουμε μια πρότυπη μάζα στο ένα σκέλος μιας ζυγαριάς, ώστε να εξισορροπήσουμε την άγνωστη μάζα πάνω στο άλλο σκέλος της ζυγαριάς. Οι επιστήμονες της κβαντικής πληροφορίας έχουν αναπτύξει μια θεωρητική "ζυγαριά διεμπλοκής", για να συγκρίνουν τη διεμπλοκή δύο διαφορετικών καταστάσεων. Η διεμπλοκή μιας συγκεκριμένης κατάστασης ορίζεται βλέποντας πόσες φορές χρειάζεται να επαναλάβουμε μια συγκεκριμένη μονάδα διεμπλοκής ώστε να εξισορροπείται η άγνωστη διεμπλοκή. Σημειώστε ότι η μέθοδος αυτή της ποσοτικοποίησης της διεμπλοκής είναι ακόμη ένα παράδειγμα της θεμελιώδους ερώτησης της επιστήμης της πληροφορίας. Έχουμε βρει μια πηγή πληροφορίας (αντίγραφα μιας διαπλεγμένης κατάστασης), και μια εργασία με ένα κριτήριο επιτυχίας. Ορίζουμε το μέτρο της διεμπλοκής ρωτώντας πόσο μέρος από τη φυσική πηγή μας χρειαζόμαστε για να εκτελέσουμε την εργασία επιτυχώς. 

Τα ποσοτικά μέτρα της διεμπλοκής, που αναπτύχθηκαν ακολουθώντας το πρόγραμμα αυτό, αποδεικνύονται εξαιρετικά χρήσιμα στην ενοποίηση των εννοιών που χρειάζονται για την περιγραφή μιας μεγάλης σειράς φαινομένων. Τα μέτρα της διεμπλοκής βελτιώνουν τον τρόπο που οι ερευνητές μπορούν να αναλύουν εργασίες όπως η κβαντική τηλεμεταφορά αλλά και αλγόριθμους σε κβαντικούς υπολογιστές. Η αναλογία με την ενέργεια βοηθάει ξανά: Για να κατανοήσουμε διαδικασίες όπως οι χημικές αντιδράσεις ή η λειτουργία μιας θερμικής μηχανής, μελετάμε τη ροή της ενέργειας μεταξύ των διαφόρων μερών του συστήματος και καθορίζουμε πως πρέπει η ενέργεια να περιορίζεται σε διαφορετικές θέσεις κατά τις διάφορες χρονικές στιγμές. Κατά παρόμοιο τρόπο μπορούμε να αναλύσουμε την απαιτούμενη ροή της διεμπλοκής από ένα υποσύστημα σε άλλο, ώστε να εκτελεστεί μια διεργασία επεξεργασίας της πληροφορίας, κι έτσι να πετύχουμε τους αναγκαίους περιορισμούς για τις πηγές που απαιτούνται για να εκτελεστεί η εργασία. 

Η ανάπτυξη της θεωρίας της διεμπλοκής είναι ένα παράδειγμα μιας προσέγγισης από τα απλούστερα προς τα συνθετότερα. Ξεκινώντας από απλές ερωτήσεις για το πως ζυγίζουμε την διεμπλοκή, εισχωρήσαμε βαθμιαία σε πιο πολύπλοκα φαινόμενα. Αντίθετα, σε κάποιες άλλες περιπτώσεις, οι άνθρωποι έχουν προσεγγίσει εξαιρετικά πολύπλοκα φαινόμενα, προχωρώντας από πάνω προς τα κάτω. Το πιο ονομαστό παράδειγμα είναι ένας αλγόριθμος εύρεσης των πρώτων παραγόντων ενός σύνθετου ακεραίου, σε ένα κβαντικό υπολογιστή. Τον αλγόριθμο αυτόν δημιούργησε το 1994 ο Peter W. Shor των εργαστηρίων AT&T Bell. Σε ένα κλασσικό υπολογιστή, οι καλύτεροι αλγόριθμοι που γνωρίζουμε, απαιτούν εκθετικά αυξανόμενες πηγές για την παραγοντοποίηση όλο και μεγαλύτερων αριθμών. Ένας αριθμός με 500 ψηφία χρειάζεται 100 εκατομμύρια φορές περισσότερους υπολογισμούς απ' ότι ένας αριθμός με 250 ψηφία. Στον αλγόριθμο του Shor η αύξηση είναι μόνο πολυωνυμική. Ένας αριθμός με 500 ψηφία χρειάζεται μόνο 8 φορές περισσότερα βήματα απ' ότι ένας αριθμός με 250 ψηφία. 

Ο αλγόριθμος του Shor είναι ένα ακόμη παράδειγμα του βασικού ζητήματος (πόσος χρόνος υπολογισμών απαιτείται για να βρούμε τους παράγοντες ενός ακεραίου με n ψηφία;), αλλά ο αλγόριθμος μοιάζει να είναι απομονωμένος από όλα σχεδόν τα άλλα αποτελέσματα της επιστήμης της κβαντικής πληροφορίας. Βλέπε εικόνα 2. Εκ πρώτης όψεως φαίνεται απλώς σαν ένα έξυπνο υπολογιστικό τέχνασμα  με μικρή θεμελιώδη αξία. Αυτό όμως είναι απατηλό. Οι ερευνητές έχουν δείξει ότι ο αλγόριθμος του Shor μπορεί να ερμηνευτεί ως μια περίπτωση της διαδικασίας για την εύρεση των ενεργειακών σταθμών ενός κβαντικού συστήματος, μιας διαδικασίας που η σημασία της είναι θεμελιώδης. Με την πάροδο του χρόνου, καθώς ο χάρτης των ζητημάτων της κβαντικής πληροφορίας συμπληρώνεται όλο και περισσότερο, θα είναι όλο και πιο εύκολο να συλλάβουμε τις αρχές που βρίσκονται κάτω από τον αλγόριθμο του Shor και από άλλους κβαντικούς αλγόριθμους. Ελπίζουμε επίσης να αναπτύξουμε και νέους αλγόριθμους.  

Μια τελευταία εφαρμογή, η διόρθωση κβαντικών σφαλμάτων, μας δίνει την καλύτερη ένδειξη μέχρι σήμερτα, ότι η επιστήμη της κβαντικής πληροφορίας είναι ένα χρήσιμο πλαίσιο για τη μελέτη του κόσμου. Οι κβαντικές καταστάσεις είναι ευπαθείς, καταστρέφονται εύκολα από τυχαίες αλληλεπιδράσεις ή από θόρυβο, κι έτσι οι τρόποι αντιμετώπισης αυτών των διαταραχών είναι μεγάλης σημασίας. 

Οι κλασσικοί τρόποι υπολογισμού και επικοινωνίας έχουν ήδη πετύχει ισχυρούς κώδικες διόρθωσης σφαλμάτων για να προστατέψουν την πληροφορία από την διείσδυση του θορύβου. Ένα τέτοιο απλό παράδειγμα είναι ο κώδικας επανάληψης που φαίνεται στην εικόνα 3. 
Το σχήμα αυτό αντικαθιστά το απλό μπιτ 0 με μια ακολουθία από 3 μπιτς, 000, και το μπιτ 1 με μια ακολουθία τριών μπιτς 111. Αν ο θόρυβος είναι σχετικά αδύνατος μπορεί ν' αλλάξει ένα από τα μπιτς σε μια τριπλέτα. Μπορεί π.χ. ν' αλλάξει το 000 σε 010, αλλά η αλλαγή 2 μπιτς σε μια τριπλέτα είναι κάτι πολύ λιγότερο πιθανό. Οποτεδήποτε συναντήσουμε 010 (ή 100 ή 001), μπορούμε να είμαστε σχεδόν σίγουροι ότι η σωστή ακολουθία είναι 000 δηλαδή 0. Πιο πολύπλοκες γενικεύσεις αυτής της ιδέας μας δίνουν πολύ ισχυρούς κώδικες διόρθωσης σφαλμάτων για την προστασία της κλασσικής πληροφορίας.  

1o, 2ο, 3ο, 4ο, 5ο

HomeHomeHome