Ποιός ο λόγος να συμπληρωθεί το καθιερωμένο μοντέλο του Big Bang;

Συχνές ερωτήσεις, Φεβρουάριος 2002

Large Magellan Cloud Η προέλευση, η εξέλιξη, και το μέλλον του Σύμπαντος διαμορφώνονται από διάφορες κοσμολογικές θεωρίες, η πιο γνωστή των οποίων είναι η Μεγάλη Έκρηξη, σύμφωνα με την οποία ο Κόσμος προέκυψε από μια "έκρηξη" του χωρόχρονου περίπου  πριν 13-15 δισεκατομμύρια έτη. Αλλά την δεκαετία του '80 νέες θεωρίες από βγαίνουν στο προσκήνιο για την αποσαφήνηση ορισμένων πτυχών της δημιουργίας του σύμπαντος.

Την εποχή που όλο το σύμπαν είχε το μέγεθος ενός ατομικού πυρήνα, με άπειρη πυκνότητα, την στιγμή μηδέν, συνέβη μια έκρηξη τέτοια που η θερμοκρασία του να φθάσει   τρισεκατομμύρια βαθμούς και να ακολουθήσει μια απίστευτη διαστολή.

Έτσι ξεκινάνε οι περισσότερες κοσμολογικές θεωρίες που ισχύουν σήμερα. Αλλά η θεωρία του Big Bang έχει ορισμένα κενά που ανέλαβε μια άλλη θεωρία, αυτή του πληθωρισμού, να τα συμπληρώσει και να ερμηνεύσει τα παρατηρησιακά φαινόμενα που βλέπουμε μέσω των τηλεσκοπίων, των διαστημικών παρατηρητηρίων και των ευαίσθητων οργάνων που διαθέτουμε σήμερα. 


Πολλοί λόγοι υπάρχουν για να πιστεύουμε στη θεωρία της Μεγάλης Έκρηξης έστω και με τα κενά της:

  1. Το σύμπαν διαστέλλεται. Το γεγονός ότι οι γαλαξίες υποχωρούν από μας προς όλες τις κατευθύνσεις είναι μια συνέπεια αυτής της αρχικής έκρηξης και ανακαλύφθηκε αρχικά από τον αστρονόμο Hubble. Υπάρχουν τώρα καθαρά στοιχεία (η έντονη μετατόπιση των φασματικών γραμμών των μακρινών γαλαξιών προς το ερυθρό) για το νόμο του Hubble, που λέει ότι η ταχύτητα που απομακρύνεται ένας γαλαξίας είναι ανάλογη προς την απόστασή του από μας. Αν κάνουμε προβολή των μέσων τροχιών των γαλαξιών, χρονικά προς τα πίσω, βλέπουμε ότι συγκλίνουν σε μια κατάσταση υψηλής πυκνότητας - η αρχική πύρινη βολίδα.

  2. Το παρατηρούμενο ποσό του ήλιου, που η θεωρία δέχεται πως είναι το 25% της συνολικής μάζας του σύμπαντος και που σχηματίσθηκε κατά τη διάρκεια των πρώτων-πρώτων στιγμών, συμφωνεί με τις παρατηρήσεις. Μετά από ένα δευτερόλεπτο περίπου το Big Bang, η ύλη - υπό μορφή ελεύθερων νετρονίων και πρωτονίων - ήταν πολύ θερμή και πυκνή. Καθώς το σύμπαν επεκτάθηκε, η θερμοκρασία έπεσε και μερικά από αυτά νουκλεόνια συνέθεσαν ελαφρά στοιχεία: το δευτέριο, το ήλιο-3, και το ήλιο-4. Οι θεωρητικοί υπολογισμοί προβλέπουν ότι το ένα τέταρτο του σύμπαντος αποτελείται από ήλιο-4, ένα αποτέλεσμα που είναι σε καλή συμφωνία με τις παρούσες παρατηρήσεις.

  3. Η Κοσμική Ακτινοβολία Υποβάθρου, η οποία τώρα βρίσκεται σε μια θερμοκρασία περίπου 2.7 βαθμών πάνω από απόλυτο μηδέν, που δείχνει πως το Σύμπαν προέρχεται από μια πυκνή, ισοθερμική κατάσταση. Περίπου 100.000 έτη μετά από το Big Bang, η θερμοκρασία του Σύμπαντος (~3.000 βαθμοί) είχε μειωθεί αρκετά ώστε τα ελεύθερα ηλεκτρόνια και οι πυρήνες που υπήρχαν μπόρεσαν να συνδυαστούν έτσι ώστε να σχηματίσουν τα άτομα του υδρογόνου (τα πιο απλά άτομα). Από αυτήν την περίοδο και μετά, η ακτινοβολία ήταν πρακτικά ανίκανη να αλληλεπιδράσει με το αέριο του υποβάθρου. Χωρίς όμως ελεύθερα ηλεκτρόνια το φως δεν μπορούσε να αλληλεπιδράσει με την ύλη για να διασκεδαστούν (scattering) τα φωτόνια, κι έτσι το Σύμπαν έγινε διαφανές στην ακτινοβολία. (Είναι αυτό το φως που θεωρούμε σήμερα ως Κοσμική Ακτινοβολία Υποβάθρου). Διαδίδεται λοιπόν ελεύθερα από τότε, χάνοντας συνεχώς ενέργεια επειδή το μήκος κύματός του αυξάνεται λόγω διαστολής του σύμπαντος. Αρχικά, η θερμοκρασία της Κοσμικής Ακτινοβολίας ήταν περίπου 3.000 βαθμοί, ενώ σήμερα έχει πέσει στους 3K μόνο - ένα φάντασμα της αφάνταστης έντονης θερμότητας της αρχέγονης πύρινης βολίδας του Big Bang.

  4. Η κατάρρευση της ύλης για να σχηματίσει τους γαλαξίες και τις άλλες μεγάλης κλίμακας δομές (σμήνη και υπερσμήνη) που παρατηρούνται στον κόσμο σήμερα. Σε, περίπου, 10.000 έτη μετά από το Big Bang, η θερμοκρασία είχε πέσει σε τέτοιο βαθμό ώστε η ενεργειακή πυκνότητα του σύμπαντος άρχισε να εξουσιάζεται από την ύλη πιά, παρά από το φως και την υπόλοιπη ακτινοβολία που κυριαρχούσαν νωρίτερα. Οι βαρυτικές δυνάμεις μεταξύ των σωματιδίων άρχισαν να γίνονται υπολογίσιμες, και μικρές διαταραχές στην πυκνότητά της ύλης αυξήθηκαν. Δέκα πέντε δισεκατομμύρια έτη αργότερα βλέπουμε τα αποτελέσματα αυτής της κατάρρευσης.

  5. Το παράδοξο του Olbers . Ο νυκτερινός ουρανός είναι σκοτεινός. Άρα δεν είναι άπειρος ο αριθμός των αστεριών (το σύμπαν δεν είναι άπειρο αλλά πεπερασμένο) ούτε χρονικά άπειρο (άρα το φως πολλών αστεριών δεν έχει φθάσει ακόμη σε μας).

  6. Η ομοιογένεια - τα δεδομένα δείχνουν πως σε οποιαδήποτε θέση μέσα στο Σύμπαν ένας παρατηρητής θα το βλέπει το ίδιο.

  7. Η ισοτροπία - πολύ ισχυρά δεδομένα δείχνουν πως ο ουρανός φαίνεται ο ίδιος σε όλες τις διευθύνσεις με μια ακρίβεια 1 προς 100.000.

  8. Χρονική διαστολή σε καμπυλώσεις του φωτός των supernova.

  9. Η μεταβολή της θερμοκρασίας TCMB με μετατόπιση στο ερυθρό. Αυτή είναι μια ευθεία παρατήρηση της εξέλιξης του Σύμπαντος.

  10. Τα ελαφρά ισότοπα δευτέριο 2D, 3He ήλιο-3, 4He ήλιο-4, και 7Li λίθιο-7 βρίσκονται σε αφθονία. Αυτό προβλέπεται από τη θεωρία των 3 πρώτων λεπτών.


Αλλά το απλό μοντέλο της Μεγάλης Έκρηξης αφήνει διάφορα  εκκρεμή προβλήματα, όπως:

  1. Το πρόβλημα του ορίζοντα -- ο γρίφος ότι το σύμπαν φαίνεται το ίδιο στις αντίθετες πλευρές του ουρανού (σε αντίθετα σημεία του ορίζοντα) ακόμα κι αν δεν έχει υπάρξει χρόνος, από την εποχή το Big Bang για το φως (ή οτιδήποτε άλλο) να ταξιδεύσει από τη μια άκρη στην άλλη του σύμπαντος και να επιστρέψει. Στην πρότυπη μορφή της, η θεωρία του Big Bang υποθέτει ότι όλα τα μέρη του σύμπαντος άρχισαν να διαστέλλονται ταυτόχρονα. Και η ερώτηση που μπαίνει είναι, πώς μπόρεσαν όλα τα διαφορετικά μέρη του σύμπαντος να συγχρονίσουν το ξεκίνημα της διαστολής τους; Πώς τα αντίθετα σημεία των ορίζοντων "ξέρουν" πώς να βρίσκονται σε συμφωνία το ένα με το άλλο;

  2. Το πρόβλημα επιπεδότητας - Ο χωρόχρονος του σύμπαντος είναι αρκετά σχεδόν επίπεδος, το οποίο σημαίνει ότι το σύμπαν βρίσκεται ακριβώς στη διαχωριστική γραμμή μεταξύ της αιώνιας διαστολής και της ενδεχόμενης κατάρρευσης. Η Γενική Σχετικότητα προτείνει ότι ο χώρος μπορεί να είναι πολύ κυρτός, με μια τυπική ακτίνα της τάξεως του μήκους Planck, ή 10-33 cm. Εντούτοις, το σύμπαν μας είναι ακριβώς περίπου επίπεδος με μια κλίμακα 1028 εκατοστά, την ακτίνα του αισθητού μέρους του σύμπαντος. Αυτό το αποτέλεσμα των παρατηρήσεων μας διαφέρει από τις θεωρητικές προσδοκίες περισσότερο από 60 μεγέθη τάξεως.

  3. Η ύπαρξη της Μεγάλης Έκρηξης. Τι ύπηρχε πριν; Εάν ο χωρόχρονος δεν υπήρχε τότε, πώς θα μπορούσαν όλα να εμφανιστούν από το τίποτα; Τι ξεπήδησε πρώτα:  ο κόσμος ή οι νόμοι που καθορίζουν την εξέλιξή του; Εξηγώντας αυτή την αρχική ιδιομορφία --που και πότε όλα αυτά άρχισαν-- ακόμη παραμένει το πιό δυσεπίλυτο πρόβλημα της σύγχρονης κοσμολογίας. 

  4. Η κατανομή της ύλης στο σύμπαν. Σε πολύ μεγάλη κλίμακα, η ύλη έχει ξεπηδήσει με αξιοπρόσεκτη ομοιομορφία. Για περισσότερο από 10 δισεκατομμύρια έτη φωτός, η κατανομή της βρίσκεται σε τέλεια ομοιογένεια για κάτι λιγότερο από ένα μέρος σε 10.000. Για πολύ καιρό, κανένας δεν είχε οποιαδήποτε ιδέα γιατί το σύμπαν ήταν τόσο ομοιογενής. Ένας από τους ακρογωνιαίους λίθους της Καθιερωμένης Κοσμολογίας ήταν η "κοσμολογική αρχή," που βεβαιώνει ότι το σύμπαν πρέπει να είναι ομοιογενές. Αυτή η υπόθεση, εντούτοις, δεν βοηθά και πολύ, επειδή το σύμπαν ενσωματώνει σημαντικές αποκλίσεις από την ομοιογένεια, δηλαδή, τα αστέρια, τους γαλαξίες και άλλες μεγάλες συσσωρεύσεις της ύλης. Ως εκ τούτου, πρέπει να εξηγήσουμε γιατί το σύμπαν είναι τόσο ομοιόμορφο στις μεγάλες κλίμακες και να προτείνουμε συγχρόνως κάποιο μηχανισμό που να παράγει τους γαλαξίες. 

  5. Το πρόβλημα της μοναδικότητας. Μικρές αλλαγές στις φυσικές σταθερές της φύσης θα μπορούσαν να είχαν κάνει τον κόσμο να "ξετυλιχθεί" κατά τρόπο απολύτως διαφορετικό. Παραδείγματος χάριν, πολλές δημοφιλείς θεωρίες των στοιχειωδών σωματιδίων υποθέτουν ότι ο χωρόχρονος είχε αρχικά αρκετά περισσότερες από τέσσερις διαστάσεις (τρεις χωρικές και μια χρονική). Προκειμένου να τακτοποιηθούν οι θεωρητικοί υπολογισμοί με το φυσικό κόσμο στον οποίο ζούμε, αυτά τα μοντέλα δηλώνουν ότι οι πρόσθετες διαστάσεις είναι "συμπυκνωμένες", ή έχουν στενέψει σε ένα μικρό μέγεθος και έχουν πτυχωθεί. Αλλά κάποιος βέβαια μπορεί να αναρωτηθεί γιατί η "συμπύκνωση" αυτών των διαστάσεων σταμάτησε με τέσσερις διαστάσεις, κι όχι δύο ή πέντε.

  6. Το πρόβλημα της ελλείπουσας ή σκοτεινής ή αθέατης ύλης. Πρέπει όμως να τονιστεί επίσης πως το μοντέλο της Μεγάλης Έκρηξης δεν μπορεί να αντιμετωπίσει το εξής πρόβλημα. Γιατί η παρατηρούμενη μάζα του Σύμπαντος είναι δέκα φορές μικρότερη της εκτιμούμενης βάσει των κινήσεων των Γαλαξιών;

  7. Η απουσία των μαγνητικών μονοπόλων. Ενώ πιστεύεται πως υπήρξαν κάποτε δεν έχει παρατηρηθεί ακόμη κανένα.

Ορισμένες μάλιστα ερωτήσεις για την Μεγάλη Έκρηξη, παραμένουν ακόμα στον χώρο της φιλοσοφικής αναζήτησης π.χ. γιατί "συνέβη" η Μεγάλη Έκρηξη, γιατί οι νόμοι της φυσικής είναι όπως είναι, γιατί υπάρχει κάτι αντί του τίποτα κ.λπ....

Η κβαντική φυσική, οι μεγάλες ενοποιημένες θεωρίες (GUTs) και οι νέες "θεωρίες του παντός" (TOEs) φαίνονται σαν ταντάλειες αναλαμπές στις πιθανές απαντήσεις. Προσπαθούν να εξηγήσουν τη φυσική συμπεριφορά των σωματιδίων και των δυνάμεων κατά τη διάρκεια των πολύ αρχικών σταδίων του σύμπαντος, με ένα ενιαίο σύνολο εξισώσεων.

Πρόσφατα έχει υπάρξει ισχυρό ενδιαφέρον για τις θεωρίες των υπερχορδών. Αυτές είχαν κάποια επιτυχία στην παροχή μιας περιγραφής της βαρύτητας, αλλά υπάρχουν μερικές φορές πυκνά μαθηματικά και διαισθήσεις φυσικής πρόκλησης.

Τέλος άλλα μοντέλα προβλέπουν την ύπαρξη πολλών παράλληλων συμπάντων, την ύπαρξη πέμπτης διάστασης όπως το μοντέλο του εκπυρωτικού σύμπαντος, το μοντέλο του πληθωρισμού και άλλα πολλά.

Δείτε και τα σχετικά άρθρα
80 χρόνια από το κοσμολογικό μοντέλο του Friedman-Lemaitre
Τι συνέβη πριν από το Big Bang;
Ενδιαφέρουσες ιστοσελίδες
Για τo Big Bang Από μια σελίδα της NASA
Cosmology: The Birth & Fate of the Universe
Σημειώσεις κοσμολογίας, που προορίζονται για σπουδαστές της Φυσικής
Στην αρχή του σύμπαντος
Η Θεωρία της Μεγάλης Έκρηξης αναθερμαίνεται από την ανακάλυψη της αρχαίας θερμότητας
Το δευτέριο που βρίσκεται στο Γαλαξία μας είναι αποδεικτικό στοιχείο για το Big Bang.
Θεωρία του Big Bang, του Χάρβαρντ.
Home